PARTICLE SPREADING DURING ACCELERATION
AND PENETRATION

E. I. Andriankin and V., V, Batii UDC 539.31

On the basis of models of viscous incompressible and ideal fluids as well as an elastic medium, the de-
struction of spheroidal particles under the unilateral effect of high pressure corresponding to acceleration
or penetration conditions is considered herein, The pressure and velocity fields here are found, the char-
acteristic angles of spreading and the size of the nondestructive compact zones are determined, estimates
are given of the specific impulse resulting in complete spreading of the particles, etc.

A theoretical solution is obtained in Legendre polynomials by separation of variables by using the
Laplace transform (for the nonstationary problem), The experiments conducted hercin agree with theory,

Investigations onthedestruction of solid particles during collisions with obstacles and during accelera-
tion were started at the beginning of the nineteenth century [1} and are intensively conducted at present
[2-5].

The destruction of spheroidal particles under the unilateral effect of high pressure corresponding to
acceleration or penetration conditions is examined herein onthe basis of models of a viscous incompres-
sible and ideal fluid and also an elastic medium. These question are of interest for the punch-through
problem since the intcraction parameters [5] as well as the maximum velocity which can be obtained dur-
ing particle acceleration depend on the degree of particle destruction. The experiments conducted agree
with theory,

1. Quasistationary Spreading of Spherical Particles. Let us examine the problem of slow quasistation-
ary spreading of a viscous spherical particle of diameter d; = 2r; subjected to a unilateral pressure (Fig.
1) corresponding to acceleration or penetration,

Let us consider the particle material to behave as a viscous incompressible fluid under conditions
of high compressions on the order of 10! bar, This approach has been developed in [2] in describing the
process of cumulative jet penetration in metals by the hydrodynamics equations of an incompressible fluid,
At such pressures the metal compressibility is several percent and the viscous stresses u,8Vz/ 9z (g = 10°
P) exceed the yield point O [6-9] although the Reynolds number remains low (Re = pyUry/p < 1),

For a quasistatic analysis it is necessary that the decelera-
tion (acceleration) time ty be greater than the characteristic wave
time ty, = dy/c, and the pressure should vary smoothly on the par-
ticle, without causing spalling,

Neglecting quadratic inertia terms and dv/dt in the hydro-
dynamics equations, let us write them as

grad p = pj - 1AV, divV =0, j= — F/m,
(1.1)

— 4 3
my = Y;mrlp,

where F is the principal vector of the surface forces.

Let us direct the inertial force vector Jalong the z axis op-
posite to the resultant of all the surface forces in a moving spheri-
cal coordinate system coupled to the center of the particle,

Fig. 1
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Applying the operation div V=0 to (1.1), we obtain the Laplace equation Ap = 0 for the hydrostatic
pressure.

The conditions of equality of stresses on the ball surface

0:: (ro, 8) = —p + 2pgdV,j0r = —Pyf (6)
G0 (ror 8) = 1o (1/rdV,100 + aVelor — Viir) = D (8) 1.2)
are the boundary conditions for (1,1).

The solutions should satisfy the continuity equation since the order of the system is raised by one
after the operation div has been applied to (1,1) to derive the equation Ap = 0, Let us seek the solution by
separation of variables:

V,= D ¥ (r) P, (cosB), Vo= 2 @(r) 9P, (cosB) /30
n=0

n=g

(1.3)

oc

p = 2 NP, {cos 8)

n==0

We obtain the system of equations
T 20, ~ (n(n - 1) - 2], 4 2n(n ) Py, = Y, 1,
r‘-"q)n" ‘L 2’-"%' —n (n + 1) r_ﬂ‘l(pn + 2r—ﬂ_1¢n = ‘Nn / Uo

for the functions ¥(r) and ¢(r), and from their solution we determine the desired functions and find expres-
sions for the velocity and pressure fields:

_ r _ _r_\z < 4o /_.r_\"“ r \n x _
V,= B |_1 ( = }\ ]cose -+ 22 ro" [An '\-._ g + B, ( | -l .« (cos 8)
r\e2 n n--3 r o \n+l 1 r\n-1 .7 9P, (cos )
V@ ———B1[1—2| -’Slne—l— 2’0* ‘:——n(n—l-i) An{r—o) +TB“ (r—n/! o ]_“_—'80 (1.4)

n=2

p= Ao+ (10pA4; = pj)rcos + 2 ﬁlﬂzsﬂ—?’) A4,r"P, (cos9)

n=2

To determine the constants Ay and Bn,we expand the external pressure Pyf(9) in a series of Legendre
polynomials and the friction 7,®(f) in associated polynomials in the interval (0, 7):

10 = 2 faPa(cos0). ©(8) = 2 @, 9P, (cos 0)

=1

fo = 221 5 1(8)sin 0P, (cos ) do 1.5)

0

=2
2n 41 - ¢ .
it %—1;—5 @ (0) sin 09, (cos 8) / 39
0

Upon penetration of particles in a dense medium the surface friction forces are proportional to the
normal pressure T = kP(ry8). For metals k is on the order of several percent so that 7 « P in this case,
Let us examine the case, often encountered, in which 7 = 0 and the external pressure is expressed by the
Newton formula P(ry, 6) = p,V,f (0), where

0 [coszﬁ, 0<C0<Ca/2

o, n/2<o<x (1.6)
The solution for the velocities and the hydrostatic pressure becomes
Pnro rirtt a2 [ rina
- .2 212"("4 ’)-r3] [(n- 1) BRI 2y, ]P"(cose)
Poro o f [ ranet p(n42) [ rA\n-1] 3Py (casB) 1.7
n | i K . T nie»™
Vo= Z 2Rr(n=2) +3] [("”‘3)‘-,7'/ : n=1 \r ] ER
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P = foPq - 1Py —cos8 - P, "2‘2 LAY () Paleosd)

It follows from (1.7) that the spreading velocities diminish in the interior domains, reaching zero
values at the center, although the velocity gradients increase as r — 0, Outward spreading of its material
is observed in the majority of particle domains, But a so-called compact head zone with inward motion of
the material exists in the particle from the side of the applied pressure, This domain is in the forward
sector with a central angle of 54° (Fig. 1),

The particle is deformed during spreading,

It can be considered that the particle is destroyed completely when the radial displacements

t

U, - 3 V.dt

0

merge at 0 = 0 and 7, The expression to determine these total displacements is found from (1.7) and is
_ (1T, (o O+ U, (rg, M)
Ty

v (1.8)
I= 3 P (ro,0,¢)dt
0

A = 0481 / o

For A =2 we find the critical value of the specific impulse I, = 121, Experiments show that metal
particles arc destroyed at the radial deformation A =1, to which value the critical impulse I, = 6y cor-
responds from (1.8).

The maximum velocity of the thrown (or decelerating during penetration) particle can be expressed in
terms of I if the interaction conditions p; > o result in viscous flow:

fif wy [ 41 Mg . . . 3
Vv 1 ¢ We [ 4 .Jg, Q__2'0.—O’ hzT

¢ =

0Ty pye \ 3my

The particle is heated strongly because of internal friction during viscous spreading,

Let us consider the deceleration (acceleration) time 7, to be much less than the characteristic heat-
ing time, Then the dissipated energy in Lagrange coordinates is conserved.

The Eulerian and Lagrangian coordinates coincide as r —~ 0 in a coordinate system where the center
is fixed, and the terms of the expansion (1.7) yield a contribution to the temperature only for n = 2, i.e.,

ar 192 2 I ; 1
0o g |, oo = T (2P e (D) f2 =5 (1.9)

The initial heating drops because of heat conduction and the temperature dependence of the viscosity
so that (1.9) yields the upper bound of the temperature.

Not all the particle material goes over into the viscoplastic state under unilateral loading, Hence,
attempts to obtain an accurate picture of the stress state in the particle are fraught with great difficulties
since solutions satisfying the viscoplastic and clastic states of the material must he joined on an unknown
boundary. The stress state can be investigated qualitatively in the example of the exact solution of the elastic
problem, which is also of independent interest since brittle materials, for example, are destroyed at low
deformations subject to Hooke's law,

General methods of solving the elasticity theory equations are known [10], lHowever, the case of a
unilateral load on the sphere according to the Newton formula is of special interest since it corresponds
to the quasistationary penefration of solid particles or to their acceleration in a plasma stream. This prob-
lem has been examined independently in {13] and by the authors. Hence, let us limit ourselves just to the
main deductions of the theory,

Setting o pp(ry, ) = —P(ry, ) and giving the boundary conditions in the form (1.6), applying separation
of variables to the elasticity theory equations in displacements, we obtain the desired solutions for the
stress tensor components:
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,,———foPo—j,Po(—}cOaO—i— ZH{ln (1) = 2(t ) () — 2L 2l (L oos )

580——'f0P0-—f1P0( )COSQ+ZH{["(1—4'{])——-2(1+1])]>(

n=g
n +1)—2n(1 — n-
X(TY:)_) _ n(n ’32—1"( 'fl) (Tro_) }P,,(cose)—,L
n+5—4n [ r\n (n41)—2(1—m) [ r\n2 , &P, 0
+H{ P (L) _—WT(TO) } x ZEnloosd)

Gop = — foPo — flpo( )0056—8—2H{[n(1-—4n)—2(1+n)]><

X(_r_)"_ n(r+1)+20(1 —n) (r_n) }pn(cose)Jr

ro nt.—1
n+5—4n (r+1)—2(1 —n) [ r \n-2] 3Py (cosB)
+”{ ) ( ) —-TT—(_) }_—ao otgd
r\e (n+1)2—2(1—n) r \n 8P, (cos®)
oom[t — (4] B IR (o) ol
H— (—H)f,.l’o

2n* 4 2n (1 +20) -+ 2(1 +n)
where 71 is the Poisson ratio,

It is seen from an analysis of the stress state that it varies along the particle volume and has a sin-~
gularity in each zone. The maximum tangential stresses which originate initially at the center and are
propagated towards the circumference to result in shear strains as P, grows are characteristic for the
zone § = n/4, Along theradius,f=1mogy =0 and opyp = 0; hence, one-dimensional compression of the mate-
rial due to the effect of inertial forces is observed in this domain,

The zone § = 7/2 contains the tensile stresses o) which are governing during destruction of brittle
particles. '

Multilateral compression of the material holds in the neighborhood of the critical point 6 = 0. This
domain is "most stable,"

2. Nonstationary Spreading of Spheroidal Particles. The solutions obtained in Sec. 1 can be consid-
ered valid on the expiration of the time t > t, when the product of the Strouhal and Reynolds numbers be-
comes much less than one. It is interesting to study the nature of the emergence of the flow into this quasi-
stationary mode under the assumption of smallness of the change in the particle outline during the time t;
and of smallness of Re.

The solution of the problem is valid for nonstationary boundary conditions when the pressure applied
to the particle depends on the time. Since Re « 1 and t; > ry/c, the equations of motion in the moving co-
ordinate system are

p0V/dt + grad p = weAV + pj, divV =0, j=F/m,

(2.1

with the boundary and initial conditions

Gy (rg, 8,8) = —Po ()1 (0), G (ry, 8,8 =0
V,(r,0,0)=0 Vo (r,8,0)=0 (2.2)
' Applying to (2.1) and (2,2) the Laplace transform
U, =5V, O Pot), TS p,
we obtain
poSU + grad I = pAU 4 pj, divU=0, AHD=0 2.3)
0, 0) + 2o | =~ Ta()1®)

(2.4)

f(8) = 2 faPn (cos 0)

(1 oU, | U, _ U

r a8 or r

r=ry

=0, u,(r,0,00=0 u(r,06,0)== O)
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The variables in (2.3) scparate into Legendre polynomials:

1=K, + K% cos 0 + 2 K. r"P, (cosB8)

n=p
= Eo P (r) P, (cosB) (2.5)

P (cose) 1
rgl%( )z Pn= '1_("_4-—17( -t 2%)
Substituting (2.5) into (2.3), we obtain equations to determine ¥, and . The solutions ¥’ and ¢,° of
the corresponding homogeneous equations are

Yol = Al (2), ¥ = Auz e () + Boatilp ()
Pn = Cpz~*31, (2) + Dpzalp(z), =1V poS /o

B 3 1
1 —_ n —_ B — - — ——
cn - * C'n - : k] a=n + 3 |3 =n 2
n>1
Let us seek particular solutions of the inhomogeneous equations in the form ¢,* = n<pn*.

For ¢p* we obtain the equation

d"an K oS m+1) /2 n
+2~T [$2+n(n—1)]@n**7(‘pﬁ) z"
for which the set of bounded solutions has the form
i K'n § \-ri 2 .
Pn” = Rozalg(2) — - ("p ) "t (2.6)

Let us select the constant

931 K, [ pas \mm1)/2
Ry= 27 @+ )2 (£5)

such that as x — 0 the principal terms proportional to xP-! are cancelled in the expansion of ¢p* and the
particular solutions (2.6) go over into particular solutions of (1.4).

The constants Ay, By, and K, are determined by substituting the solutions ¢, = ¢n° +¢p* and @0y =
wn" + @ _* into the boundary conditions (2.4), from which we find after manipulations using recursion rela-
tions for the Bessel functions
2 (02— 1) nnfnro:ro"f

Cn =Dy,
22— ) Mg rozy™® [1 _ 2rg+L10, ]
(2n + 1) Beq, 2(n? —{) zf

Ap=—

B, =

01122("'2'_‘1)Ia+ 2n(n+2)+43 2n(n+2)

T3 Zolp4y (o) + Zolp;3 (2o)
M7, 2,0,
@r 1) g,r,"
ghn={2m—102r(n-+2)+3+z2@n+ 1} (x)) +2@r 1) (n —1) + 20 2ola (24)
n>2
Ao=A, =8B =K =0, K,=1,
The solutions for the transforms are

n =

IT == follo -+ /i~ cos 8 + M K. P, (cos 0)

n=2

U, = D) Az~ tIq (2) 4- Buz =15 (2) + nK . F (z)
e 2.7
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=<

Us= Q) — A, [ (n =)z, (2) + (B[ n) 230 (z) -+ K, F (2)

n—=e

F(z)= l:: (::S‘)mﬂ)l ’ (2P0 (@ +- 1)z T, (2) — 271

Using power series expansions of the Bessel functions and keeping only the principal terms, we can
verify that the expressions (2.6) go over into the solution (1.7) for the quasistationary problem as S — 0,
The expression qu(X) for n= 2 and x > 0 contains only positive terms, and qp(—X) = (—1)*qpu(x) for x < 0,
Hence, the equation gn(X) = 0 has no real roots for x < 0. It is convenient to seek the pure imaginary roots
qn(ixk) by substituting I, (X) = i'aIaO\), A = ix, i.e,, to determine them from the expression

2(n — 1) 2n(n 4 2) 4+ 3] — &? 2n 4 1)} Lo (hen) — Man [2 Cr 4+ 1) (2 — 1) — Aey®] Taey (Ain) (2.8)
The roots Agp may not be complex. The Bessel functions I, and I, +; are represented as power series
with real coefficients; hence, if complex roots A and A were to exist in (2.8), then they would be pairwise

conjugate., Using (2.8) and the recursion relation Al +y = aly — AdIa/ dX in the evaluation ofthe integral

1
g . — N |I:x AR [3-~(n —1) (42— 1)]
0<>§lu (A& I, (AE)dE == [Z(n =D @ =1) — A (2.9)

we arrive at a contradiction since the expression in the right side of (2,9) is negative for n= 2 and the in-
tegral is always positive., This contradiction proves the absence of complex roots in (2.8), The number of
real roots in (2.8) is infinite for each n, The velocity of emergence into the stationary mode is determined
by the roots closest to zero, Computations by means of tables [11] show that the roots closest to zero for
n =2 are Ay = 5.5 and Ay, = 8,8 and the correction to the stationary mode damps out rapidly in proportionto

exp [— (not/pere®) (5.5)%

Going from the transforms to the original in (2.7), we obtain the exact solution of a nonstationary
problem with a fixed contour:

e }J Z CA“P( ){ ‘) P, (cosB)
n=2 K=1
1Tz, (50) s 99, (20)
Ck - (2" _! ”qn k) Qn - as S=Sk
> = ) 1. (500 Ca g (2.10)
Vo= Viet B N (A 0l (50 + B o 2l (2 + i (an) P ()] 2 Bexp [ — 2o Tony )
n=2 k=1 n
S A (!‘ t B (I n') 1 ) Y ) ¢ 7
VomVei 33 [ S e ) R e K o) P | e[t B

n=2 k=1 n L an (A

where the subscript ¢ denotes the pressure and velocity components in the quasistationary solution (1.7)
corresponding to S = 0,

As the amplitude of the pressure grows, the particle strain rate becomes so great that it is impossible
to consider the number Re small. In this case the deformation is similar to the spreading of a drop of ideal
fluid. If the time of external-pressure action is short but the pressure amplitude is large, then the par-
ticle acquires a finite impulse during a short time. A velocity field originates instantaneously in the volume
of a particle subjected to impact and is described by the hydrodynamic potential equations

Ap=0, V=grade @2.11)
As the particle spreads, its shape changes and should be determined during the solution of the prob-
lem for a rigorous formulation, For a qualitative estimate, it can be considered that the particle is con-
verted into an oblate ellipsoid of revolution with eccentricity varying with time during spreading. Let us
consider the problem in an ellipsoidal coordinate system «, 3, vy by taking the previous loading scheme
(Fig. 1) and taking account of the impulse distribution I(5) on the ellipsoid surface in conformity with the
Newton drag law '
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I, = Iych? agycos? Brich? ay -~ sin? B), 0< f<Cn/2

The solution of the Laplace equation for the in-
ternal ellipsoidal domain with the boundary condition

Olye gy = ~Tof BVpy is

] .—___{l w"_ ~Pﬂ(isha()
P Pa o n Pn (i sh )

n=0

P, (cos3) ;

hence, we obtain for the velocity components

9P (ish2)
L P, (cosB)

Va= uohc 2’ P (i sh ) da Lo

2 Polisho) AP (cos3)  (2,12)
- onhc ' P_ (i sha) a3

h:(vh"a—sm“a), shag=0b/c, chay=a/c

where c is the focal length, and ¢ and b are the major
and minor semiaxes of the ellipsoid.

It follows from an analysis of (2,12) that the
normal rate of contour deformation diminishes at 8=
m/2 as the ratio a/b grows, while the tangential de-
formation remains constant, If a -r,b—r, ¢ —0,
Fig, 2 then the ellipsoid is converted info a sphere. The ini-
tial velocity field will here be

I, ad . \n-
V,= 2 nj, (L1 P, (cos0)

or

(2.13)

2/ / r \n-1 apP (0059)

Pn \ r1 50

Analysis of (2.13) shows that the main mass of particle material spreads outwardly under a pulsed
effect, with the exception of a rear compact zone within the sector 6 = 160-200°, which is impressed in the
particle under the effect of inertial forces,

The spreading of spherical particles consisting of a nucleus with density p, and radius r, and a shell
with density p; and outer radius r, is investigated analogously. The solution for the potentials in the nu-
cleus ¢, and the shell has the form

¢ = 2 (4,r" + B.r ") P, (cos0),
=0

N (2.14)
= 2 D, P, (cos 6)
TizTQ

To determine the constants Ay, Bp and Dy, the condition of equality of the velocities (8(,01/ar)r:r =
(8p,/ 8T)r=r, and the impulses p;p;(ry) = py@,(r3) at r = 1, should be used in the problem in addition to the
conditions on the outer contour ¢, (ry, 0) = =1y (8)/p;. For p, = 0 (2,14) yields the solution of the problem
of spreading of hollow particles.

3. Experimental Results. The experiments were conducted by using a ballistic apparatus which per-
mitted the firing of steel balls of 9-15-mm diameter (3-13 ginweight) at velocities up to 2.5 km/scc, Quasi-
static modes of particle loading were considered in the first series of tests, whereupon the particles were
decelerated in aluminum blocks whose thickness exceeded the particle diameter many times. Annealed and
incandescent particles, i.e., viscous and brittle, were examined. After penetration the balls were extracted
from the blocks in each experiment and the mechanism of their destruction was investigated. Photographs
of the incandescent balls from the rear surfaces are presented in Fig. 2a. It is seen from the photographs
that discontinuities because of the tensile stress o, originating in the "equatorial” region of the ball are
the main kind of destruction,
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Fig. 4 Fig. 5

Radial cracks are clearly expressed in the ellipsoidal particles (Fig. 2b), where they occupy a rela-
tively large volume as compared with the spherical particles. The next series of experiments was con-
ducted with annealed (viscous) particles, whose main mechanism of destruction is a shear mechanism,
These experiments confirm the presence of a compact head zone, which retains its completeness during
particle destruction (Fig. 3). The compact zones have the shape of cones with a ~90° vertex angle. The
rest of the spheroid material slides over the generator of this cone, being spread outward in conformity
with the theory of viscous outflow and the theory of elasticity,

Presented in Fig. 4 is a photograph of a crater in a section formed in the thick aluminum obstacle
for a V=2-10° cm/sec ball velocity. At the center of the crater there is a rise formed by the undestroyed
compact head zone of the particle, The creater is similar to a lunar cirque, adding therefore to the hy-
pothesis [12] of the possible mechanism for their formation,

To estimate the angles of dispersion of the secondary particles formed during destruction of the main
particle, lead balls were used which were completely destroyed in the velocity range mentioned. Their
behavior is described well by viscous and ideal fluid models, The obstacle was h/ dy= 0.6 thick.

As the velocity grows, the angle of dispersion of the secondary particles increases, tending to a finite
value in conformity with the result of theory., Presented in Fig. 5 is a photograph of a block located at
some distance from a thin (h/d, = 0.5) obstacle punched through at a velocity V, = 5 km/sec on which is
seen the "ring" dispersion of the secondary particles, due to the intensive displacement of the particle
material to its peripheral regions, as follows from theory.

The authors are grateful to G, S, Shapiro for discussing the results of the research.
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